Protocol Architecture

CSE/EE 458: Data Communication (ATM)

Guohong Cao Department of Computer Science & Engineering 310 Pond Lab gcao@cse.psu.edu

• Similarities between ATM and packet switching

- Transfer of data in discrete chunks
- Multiple logical connections over single physical interface
- In ATM flow, packet size is fixed, called cells
- Minimal error and flow control
 - Reduced overhead
- Data rates (physical layer) 25.6Mbps to 622.08Mbps

2

ATM Logical Connections

- Virtual channel connections (VCC)
 - Basic unit of switching
 - Full duplex, fixed size cells
 - Between end users: user data or control signals
 - Between end user and network: control signaling
 - Between network entities:network management, routing
- Virtual path connection (VPC)
 - A bunch of VCCs with the same end points
 - Simplify network architecture
 - Increase network performance and reliability
 - Reduce processing time, short connection setup time

1

Request for

Transmission of ATM Cells

- 622.08Mbps, 155.52Mbps, 51.84Mbps, 25.6Mbps
- Cell based physical layer
 - No framing imposed
 - Continuous stream of 53 octet cells
 - Cell delineation is based on the header error control field
- Synchronous digital hierarchy (SDH) based
 - Imposes structure on ATM stream, e.g. for 155.52Mbps
 - Specific connections can be circuit switched using SDH channel
 - SDH multiplexing techniques can combine several ATM streams

9

ATM Service Categories

- Real time: amount of delay, variation of the delay (jitter)
 - Constant bit rate (CBR)
 - Real time variable bit rate (rt-VBR)
- Non-real time
 - Non-real time variable bit rate (nrt-VBR)
 - Available bit rate (ABR)
 - Unspecified bit rate (UBR)

10

Real Time Services

- Constant bit rate (CBR)
 - Supports fixed data rate
 - Tight upper delay bound
 - Can support uncompressed audio and video
 - Video conference, interactive audio, A/V distribution, retrieval
- Real time variable bit rate (rt-VBR)
 - Time sensitive application
 - Tightly constrained delay and delay variation
 - The transmission rate varies with time
 - e.g. compressed video, produces varying sized image frames
 - Can statistically multiplex many connections to efficiently utilize the bandwidth.

nrt-VBR and ABR

- Nrt-VBR
 - May be able to characterize expected traffic flow
 - Improve QoS in loss and delay
 - End system specifies:
 - Peak cell rate, sustainable or average rate
 - Measure of how bursty traffic is
 - e.g. Airline reservations, banking transactions
- ABR:
 - The application specifies peak cell rate (PCR) and minimum cell rate (MCR)
 - MCR must be satisfied during resource allocation
 - Spare capacity shared among all ABR services
 - e.g. LAN interconnection

UBR

13

- May be additional capacity left besides the resources used by CBR and VBR traffic
 - Not all resources dedicated
 - Bursty nature of VBR
- For application that can tolerate some cell loss or variable delays
 - e.g. TCP based traffic
- Cells are forwarded on FIFO basis
- Best effort service

ATM Adaptation Layer

- Support for protocols that are not based on ATM
- PCM (voice)
 - Assemble bits into cells
 - Re-assemble into constant flow
- IP
 - Map IP packets onto ATM cells
 - Fragment IP packets
- Handle transmission errors,
- Segmentation and reassembly
- Handle lost and out-of-sequence cells
- Flow control and timing

AAL Protocols

- Convergence sublayer (CS)
 - Support for specific applications
 - AAL user attaches at SAP
- Segmentation and reassembly sublayer (SAR)
 - Packs and unpacks info received from CS into cells
- Four types
 - Type 1: CBR, circuit emulation, voice over ATM.
 - Type 2: rt-VBR, VBR voice and video
 - Type ¾: nrt-VBR, general data services
 - Type 5: All types, voice on demand, IP over ATM, LAN emulation

14

What Is Congestion?

- Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity of the network
- Congestion control aims to keep number of packets below level at which performance falls off dramatically
- Data network is a network of queues
- Generally 80% utilization is critical
- Finite queues mean data may be lost

Effects of Congestion

- Packets arriving are stored at input buffers
- · Routing decision made, packet moves to output buffer
- Packets queued for output are transmitted ASAP
 Statistical time division multiplexing
- If packets arrive too fast to be routed, or to be output, buffers will fill
- Can discard packets, can use flow control
 - Can propagate congestion through network
- Ideal performance assumes infinite buffers and no overhead
- Buffers are finite, overheads occur in exchanging congestion control messages

Choke Packet

- Control packet
 - Generated at congested node
 - Sent to source node
 - e.g. ICMP source quench
 - From router or destination
 - Source cuts back until no more source quench message
 - Sent for every discarded packet, or anticipated

Implicit Congestion Signaling

- Transmission delay may increase with congestion
- Packet may be discarded
- Source can detect these as implicit indications of congestion
- Useful on connectionless (datagram) networks
 - e.g. IP based
 - (TCP includes congestion and flow control see chapter 17)

26

25

Explicit Congestion Signaling

- Network alerts end system of increasing congestion
- End systems take steps to reduce offered load
- Backwards: congestion avoidance in the opposite direction to packet required
- Forwards: congestion avoidance in the same direction as packet required
- Binary: a bit set in a packet indicates congestion
- Credit based
 - Indicates how many packets source may send
 - Common for end to end flow control
- Rate based: supply explicit rate limit; e.g. ATM